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The stability to linearized two-dimensional disturbances of plane Poiseuille flow of a 
Bingham fluid is considered. Bingham fluids exhibit a yield stress in addition to a 
plastic viscosity and this description is typically applied to drilling muds. A non-zero 
yield stress results in an additional parameter, a Bingham number, and it is found that 
the minimum Reynolds number for linear instability increases almost linearly with 
increasing Bingham number. 

1. Introduction 
Drilling muds are used in the oil industry to provide lubrication and cooling to the 

drill bit, to carry rock cuttings to the surface and to provide hydrostatic containment 
of formation fluids. The muds are a mixture of water (possibly emulsified with oil), 
weighting material and clay, as well as small quantities of salts and polymeric fluid loss 
additives. This physical makeup leads to complex rheological behaviour with the muds 
showing strong non-Newtonian stress/strain-rate relationships. As only small 
quantities of polymer are present, the major feature of the stress/strain-rate 
relationship is that of an inelastic non-Newtonian fluid. 

The source of inelastic non-Newtonian behaviour lies in both the fluid/solid mixture 
and in the ability of clay particles to cross-link chemically, forming bonds between 
particles. This produces a range of non-Newtonian behaviour depending on the extent 
and rate of cross-link formation. Once links have formed the mud resists motion until 
a yield stress is reached, at which point the cross-links are mechanically broken and the 
mud behaves as a fluid. In the period before the yield stress is reached it is not known 
whether the mud undergoes creep or elastic deformation but one would expect a 
variety of possibilities, depending on the type of mud and the timescale over which the 
stress is built up. Once the yield stress is exceeded the mud viscosity may vary 
considerably with changing strain rate. If the fluid is brought back below the yield 
stress, cross-links again dominate and the fluid gels and becomes solid. The process of 
cross-link formation and destruction is not instantaneous and drilling muds show 
extensive thixotropic properties. In this paper thixotropy will not be considered and the 
internal cross-linking process is idealized as happening instantaneously. In the simplest 
model of this type of fluid, the excess deviatoric stress over the yield stress is assumed 
to be a linear function of the shear rate. Such fluids are called Bingham fluids and this 
description is used widely in oilfield calculations. 

Oldroyd (1947) formulated the constitutive relations between stress, strain and strain 
rate by assuming an elastic response below the yield stress and an inelastic response 
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above the yield stress. In a viscometric-type flow with displacement S(p, f )  and velocity 
G(j, f )  in the $-direction, the deviatoric stress .i is given by 

i = Eaiipp 

i = a q a j  
when .i < ro, where ro is the yield stress, and by 

when .i > ro. E is the Young’s modulus and ,uo is the (limiting) fluid viscosity. More 
recently the elastic behaviour has been neglected and it is assumed that the strain rate 
vanishes when the stress is below the yield stress, (e.g. Beris et al. 1985; Walton & 
Bittleston 1991). In this paper the latter formulation is followed. 

Since drilling muds are used to carry cuttings from the drill face to the surface it is 
important to know the nature of the fluid motion in the annulus between the drill 
collars or drill pipe and the well bore. In particular it is essential to know whether the 
flow is laminar or turbulent. Under certain circumstances the annulus can be 
approximated as a two-dimensional channel. The stability of such channel flows is then 
an important design feature in any pumping strategy. 

For Newtonian fluids the stability of plane Poiseuille flow has received considerable 
attention. Two-dimensional, linear perturbations result in the instability of plane 
Poiseuille flow for Reynolds numbers, R, such that R > R, = 5772; see e.g. Orszag 
(1971). The Reynolds number here is based on the maximum fluid velocity and the 
channel half-width. Weakly nonlinear stability theories (and extensions) have indicated 
that instability can result from sufficiently large-amplitude finite perturbations for 
Reynolds numbers above z 2900; e.g. Zahn et al. (1974); Herbert (1976). In contrast, 
laboratory results have shown instability to finite-amplitude disturbances for Reynolds 
numbers as low as 1000, e.g. Davies & White (1928); Pate1 & Head (1969). 

The apparent discrepancy between theoretical and experimental values has more 
recently been explained by Orszag and co-workers; see Orszag & Kells (1980), Orszag 
& Patera (1983). Orszag & Patera considered the three-dimensional linear stability of 
a finite, two-dimensional perturbation to the laminar flow. For Reynolds numbers 
greater than about 2900 the nonlinear instability of the laminar solution allows such 
two-dimensional perturbations to be sustained. For R < 2900, although finite 
perturbations are predicted to decay, the decay occurs on a relatively slow timescale, 
(- R), and this allows time for rapid growth of the three-dimensional linear 
perturbations to occur. This analysis has been able to predict critical Reynolds 
numbers of about 1000, for moderate amplitudes of the two-dimensional disturbances. 
More importantly, the growth rates predicted for the secondary three-dimensional 
instability are much larger than those that are predicted for linear two-dimensional 
Orr-Sommerfeld modes, and are characteristic of the convective timescale of the basic 
flow. This fits well with the rapid subcritical transition to turbulence, which is observed 
to take place over a few channel widths, in plane Poiseuille flow. 

The stability of plane Poiseuille flow of a Bingham fluid has received very little 
attention to date. In Bingham fluids the non-dimensional ratio of the yield stress and 
the viscous stress is referred to as the Bingham number. Experimental work by Pratt, 
reported in Hanks & Pratt (1967), shows a massive increase in transitional Reynolds 
number from about 1400 to about 26700, as the Bingham number is increased from 
about 0.45 to about 560. These Reynolds and Bingham numbers are based upon the 
maximum fluid velocity, the limiting viscosity, ,uo, and the channel half-width. Similarly 
significant increases in transitional Reynolds number with Bingham number are 
observed in pipe flows, for which there is much more experimental data, e.g. Thomas 
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(1960). However, the viscosity of a Bingham fluid varies with the rate of strain. Use of 
an effective viscosity scale, the mean fluid velocity and an effective pipe diameter as a 
lengthscale results in transitional Reynolds numbers which lie in the range 2000-3000 
for pipe, annulus and channel geometries. Hanks and co-workers have formulated an 
empirically based theory to predict transitional Reynolds numbers and friction 
factor/Reynolds number curves for the flow of Bingham fluids in these geometries, e.g. 
Hanks (1963), Hanks & Pratt (1967), Hanks & Dadia (1971). It is essentially this theory 
that is used for many oil flow calculations (e.g. Dowel1 Schlumberger 1985). 

Although extremely useful for engineering purposes, such theories do not begin to 
address the mathematical issues. When departures are made from the Newtonian 
model of a fluid it is particularly important that issues such as stability are addressed 
from a mathematical/theoretical viewpoint, as well as from an empirical one. The 
Bingham model is highly idealized, and usually approximates a more complex fluid 
rheology. Thus, the proper interpretation of empirical results always depends on the 
effectiveness of this approximation. 

This paper considers the stability to small disturbances of Poiseuille flow of a 
Bingham fluid in a two-dimensional channel. This is the first step that should be taken 
in developing a more complete mathematical understanding of the instability of such 
flows. Although transition for a Poiseuille flow of a Bingham fluid is likely to be 
subcritical, there is no guarantee. The linearized theory developed here will underlie 
weakly nonlinear theories such as have been developed for Newtonian fluids. 
Additionally, the linear critical Reynolds number is of interest, since it forms an upper 
bound (on R) for the flow's stability, and gives insight into how fluid stability is affected 
by a yield stress. 

An outline of the remainder of the paper is as follows. In $2 the equations of motion 
for a Bingham fluid are formulated and the basic unperturbed Poiseuille flow is 
described. In $ 3  the linear stability of the basic flow is considered, and the numerical 
solution of the stability problem is given in $4. In $ 5  the results and their applicability 
are briefly discussed. 

2. The Bingham model of Poiseuille flow 

for a Bingham fluid are 
As indicated above, the tensorial forms of the constitutive equations that will be used 

A 

4 = fi.0.i 2 70, 

y = o e f  < 70, (1) 

where a hat denotes a dimensional variable, and where i. and + are the rate-of-strain 
and deviatoric stress tensors respectively. The yield stress is denoted by 70 and f 
denotes the effective viscosity, defined by 

j and .i are respectively the second invariants of the rate-of-strain and deviatoric stress 
tensors. They are given by 

f = p0+70j-1; (2) 

( 3 )  j = [& y& 
.i = ['f 2 21 ...i..]+. a? (4) 

" A l  

Denoting by jj, p, li and 6 the fluid pressure, density, velocity vector and stress tensor 
respectively, the full equations of motion for a Bingham fluid in the absence of external 
forces are 0.2 = 0, ( 5 )  

6 = -$++, (7) 
p[li{+(&v)G] = V.3($,2), (6) 
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where S is the Kronecker delta. At the boundaries of the flow region the usual 'no-slip' 
conditions u ' i  I I h o I d , 

These equations are satislied everywhere in  the fluid. However. in regions where the 
yield stress is not exceeded the stress tensor \ \ i l l  be indeterminate. I n  these regions. the 
rate-of-strain tensor is identically zero. Hence, such regions behave as would ;I rigid 
solid. These regions are called 'plug'  regions. Boundaries of plug regions are located 
via the yield criterion 

The motion of a plug region. Q,. is determined by conservation of momentum. 
Conservation of linear momentum is represented by 

7 = 711.  (8) 

where n is the outward normal to Q\. Where rotational motions of the plug are possible 
there will also bc an equation describing the conservation of angular momentum. Such 
motions will not be considered here. 

The basic flow considered is that of a two-dimensional channel formed by flat plates 
f = i L with an imposed dimensional pressure gradient el in the .<-direction, i.e. 

[j = - P  I1 . < (10) 
(with a n  appropriate choice of coordinate origin). In this configuration there exists a 
steady Poiscuille flow' solution. = ( fi( .f). 0,O). By considering a parallelepiped of 
fluid. of width 2T. centred in the channel, one finds that the only non-zero component 

( 1  1) 
o f ?  satisfies 

At the channcl wall. -i = T l i ,  = Lei. If rll < T,,. then the yield stress will be exceeded for 
1.i.l > LT,,/T,, and the fluid will flow in the channel. 

i,, = -elf. 

For I f 1  > Lr,,/r,,.. the velocity component 6'(f) in the .<-direction satisfies 

(12) 

with boundary conditions 

In the region 
satisfies 

The function 

1:I < LT~ , /T , ,  the yield stress is not exceeded. and from ( 1 )  the plug velocity 

fi(t) that satisfies ( 1  2), ( 1  3), (14) and ( 1  5 )  is given by 

I t  is sketched in figure 1 
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FIGLIRF. I .  Poiscuille flow gcomctry and vclocity profile for ;I Bingham fluid 

These equations are non-dimensionalized using a lengthscale L,  a velocity scale 

and a stress/pressure scale ,i)L':. Two non-dimensional groups are defined : a Reynolds 

and a Biiigham number 

Using this non-dimensionalization. and omitting the hat notation for dimensionless 
variables, the full equations of motion are 

v * u  = 0, (20)  
u , + ( u . V ) u  = V . ( - p S + s ) ,  (21) 

1 B 
R R 

7 = - r / ( j ) y o T  3 -, 

The usual form of the Navier--Stokes equations for a Newtonian fluid is recovered 
when B = 0. After scaling. the basic Poiseuille flow solution, ( p ,  u) = (P .  U )  
= (P(  v), L7( J,), 0.0). becomes 
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Before analysing the linear stability of this solution to two-dimensional perturbations 
in the next section, the unsteady one-dimensional case of (20)-(25), in which all 
quantities are independent of x, is briefly considered. 

Assume symmetry about y = 0 and suppose that at t = 0 the yield surface is at 
y = so =k ro/r,. Then in the evolution towards the steady solution (27), the unsteady 
horizontal velocity u(y,  t) and yield surface s(t) satisfy 

au  B ~ ,  1 a2u 
- = -+-- 
at Rro Ray’’ s(t) < y < 1, 

with initial and boundary conditions 

au -(s(t), t) = 0. 
aY 

The equation of motion of the plug, with speed us(& is given by 

s ( t ) L  du = -s(t)--. Br, 
B 

dt RrO R (33) 

The first term on the right-hand side of (33) is the action of the pressure gradient and 
the second term is the action of the shear stress (equal to the yield stress, BIB);  the left- 
hand side is the acceleration of the material in the plug region. 

This problem is stated here for two reasons. First, it is the simplest stability problem 
for a Poiseuille flow of a Bingham fluid and, as such, illustrates straightforwardly the 
main flow parameters. This problem has been studied extensively by Comparini (1992), 
who proves existence and uniqueness of a solution. The linear stability of the steady 
solution to (28)-(33) is considered in the next section, along with the two-dimensional 
analysis. Secondly, (3 1)-(33) illustrate very clearly the interpretation of Bingham fluid 
flow problems as free boundary problems. 

Whilst free boundaries are often found in fluid instability problems, the free 
boundaries commonly represent material surfaces. For a Bingham fluid this is not the 
case, since the yield surface is not a material surface (i.e. the left-hand side of (33) is not 
(dldt) [s(t) us(t)]). For this reason Bingham fluid flow problems often resemble other 
(non-fluid dynamical) free boundary problems. Such an analogy can at times be 
helpful. In fact, by setting 0 = uy and eliminating us in the above, one obtains a free 
boundary problem for 0 that is very closely related to the classical Stefan problem, for 
phase change in a pure material; see e.g. Comparini (1992). 

3. Linear stability analysis 

flow (P, U )  described by (26) and (27) above. The perturbed flow satisfies 
Consider an infinitesimal disturbance of form (ep, ~ u ) ,  where c << 1,  to the primary 

V.[U+€U] = 0, (34) 

(35) €Ut + [( u+ €24). V] [ u+ €U] = v. o(P+ €p, u+ su). 
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Wherever the yield stress is exceeded, the effective viscosity of the perturbed flow is 
expanded about the basic flow, i.e. 

Linearized disturbance equations are derived by substitution of (36) into (35) and 
subtraction of the primary flow equations, retaining terms of order e only. These 
equations are 

Q * u  = 0, (37) 
1 
R u,+vu,+ uu, = -p,+-v2u+- 

(39) I R RB( ~:y[j;uJ+ j ( U )  ’ 
v2v - v,, - uys v,+uu, = --py+-vzv+- 2u - __ 

w,+ uw, = --p,+-vzw+- B{ (v,+w )- d [  - I+!?}. 
R R dY j ( U )  j ( U )  

Equations (37)-(40) describe the evolution of the velocity and pressure perturbations 
from arbitrary initial conditions, given appropriate linearized boundary conditions. 

At the fixed boundaries of the flow region it follows from the no-slip condition that 

u = O  on y = + l .  (41) 
This is sufficient to describe the linear stability problem for a Newtonian fluid, B = 0. 
For B > 0, it is assumed that the yield surfaces at y = &7,/7, undergo an initially 
smooth perturbation of size O(e), during which the plug persists, and that any 
instability then develops from this initial perturbation. 

Some justification for this assumption comes from the observation that a Bingham 
fluid models a real fluid which behaves both as a viscous fluid and as an elastic solid, 
depending on whether or not a certain yield stress is exceeded. Since an elastic solid 
would not break up, it is a physically desirable property of the model that the solid plug 
should also be able to withstand an infinitesimal perturbation without breaking up. 
Further discussion may be found in Frigaard (1990). 

The perturbation (ep,eu) is assumed periodic in the x- and z-directions, say with 
periods 2X and 2 2  respectively. The yield surfaces at y = k70/7, perturb to 

(42) y = & 7 0 / 7 ,  f eh+(x, z, t ) ,  
where h, and h- are also assumed periodic in x and z .  The yield criterion (8) is 
linearized about the continuation into the plug region of the primary ‘fluid’ velocity 
field. Equation (25) is also linearized about the basic flow. These linearizations involve 
the yield surface perturbations, Eh*, as well as the pressure and velocity perturbations. 
The boundary conditions at the yield surfaces become 
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wt(x, & 7 0 / 7 w ,  t )  = 0. (51) 
Derivation of these equations is described in detail in an Appendix at the end of the 
paper. 

3.1. One-dimensional perturbations 
Linear stability of plane Poiseuille flow of a Bingham fluid is determined by the 
behaviour of solutions to (37)-(40), subject to the boundary conditions (4 l), conditions 
of periodicity at x = & X ,  z = 12, and the conditions (43)-(51) at y = _+70/7w. The 
disturbance equations and boundary conditions are linear. Substitution of an 
expansion of the solution in terms of normal modes yields an eigenvalue problem. 
Periodicity of the solution in the x- and z-directions suggests that the one-dimensional 
case 

(52) 
is special, since for all other normal modes the integrals involved in (49) and (50) 
integrate to zero. The normal mode (52) corresponds to a straightforward expansioin 
or contraction of the plug region. 

On substituting (52) into the linear disturbance equations and boundary conditions, 
it is easily found that v(y) = 0, w(y) = 0 and p ( y )  = constant. There remains the 
following problem for u(y)  and h ,  - (compare with (28)-(33)): 

( P ,  *, h i )  - (P(Y) ,  UbJ) ,  4 Y > ,  W ( Y ) ,  h,, h-) ent 

u = o ,  y = + l .  (56) 
On taking (55) and (56) as Dirichlet boundary conditions for u, it is seen that u(y)  and 
u( - y )  satisfy identical equations and boundary conditions for JyI E [70/7w, I]. Thus, u 
is even, uy is odd, and h, = h-, from (54). It is sufficient only to consider y > 0. By 
setting 

p2 = hR( 1 - To/Tw)2, 

and eliminating h - +, the problem transforms to 
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Note that h is real, since u is real. Hence, positive values of h correspond to real p. 
Non-trivial solutions for u are of form u(g = A sinh /I( 1 - g), satisfying the boundary 
condition at = 1. To satisfy the condition at < = 0, requires that 

pcosh/I++P2B(1 -70/7w)sinh/I = 0 (60) 

have a solution. It is easily verified that (60) has no real solutions for 
mode (52) is unconditionally linearly stable. 

=k 0. Hence, the 

3.2. Normal modes and the Orr-Sommerfeld equation 
For normal modes other than (52) the integrals in (49) and (50) vanish, but the 
eigenvalue problem becomes multi-dimensional. For simplicity, only two-dimensional 
perturbations are considered. It can be seen from (38)-(40) that the coupling between 
the x- and y-direction velocity perturbations is much stronger than with that in the z- 
direction. Indeed, when there is no pressure perturbation p ,  (38) and (39) uncouple 
completely and could be considered separately. With a Newtonian fluid ( B  = 0) 
Squire’s transformation guarantees that, as R is increased from zero, a planar 
Poiseuille flow will first become unstable to infinitesimal disturbances which are two- 
dimensional (Squire 1933). When B > 0 Squire’s transformation cannot be applied and 
instead it will be assumed that the flow first becomes unstable to two-dimensional 
disturbances. 

For a two-dimensional perturbation the continuity equation (37) can be satisfied by 
use of a stream function Y(x,y, t ) ,  setting 

u = Y,(X, y ,  9, 21 = - ujc(x, y ,  0.  

(Y,u,p, h i )  = ( f ( Y ) , P ( Y ) ,  hiJeia(-. 

In normal mode form the solution may be written as 

Since a = 0 has been considered above, only a > 0 is considered. On taking the curl of 
(38) and (39), and substituting in a normal mode, after a little algebra one gets 

iaR[(U-c)Cfy,-a2f)-fU,,] = [ - a z 1  d2 
dY 

This is the Orr-Sommerfeld equation for a Bingham fluid. It is a fourth-order 
ordinary differential equation for f(’), IyI E (70/7w, l), and may be seen to reduce to its 
more familiar form for a Newtonian fluid by letting B + 0. For different R, B, 70/7, and 
a, this becomes an eigenvalue problem for c. Positive values of Im(c) correspond to 
unstable normal modes. Boundary conditions at y = & 1 are that 

f =  0, 

f ,  = 0, 

fy = 0, 
and at y = + ~ ~ / 7 ~ ,  from (43)-(50), 

f =  0. (66) 

Since (61) is symmetric about y = 0, the problems in the two fluid regions clearly 
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uncouple and are equivalent. Hence, it is sufficient to consider only one region, say 
y E [ ~ ~ / 7 ~ ,  13. By putting y = 70/7, + t( 1 - T , J T ~ ) ,  and defining - 

R = (1 - T ~ / T , )  R, 
B = (1 -T,,/T,) R, 
& = (1 - 70/7w) a, 

(67) 
(68) 
(69) 

- 

(61) transforms into 
idiR“L(1- 5’ - c) ( ~ ( 5 )  - &;”f) + 2f(t)I 

where a prime denotes differentiation with respect to [. The non-dimensional numbers 
R” and B” will be called the reduced Reynolds and Bingham numbers for this problem, 
since they use the width of the yielded flow region in the primary flow as an appropriate 
lengthscale instead of the half-channel width. The definition of & then amounts to 
measuring the wavelengths of the normal modes in terms of the new lengthscale. Now 
[ E [ O ,  11 and the boundary conditions become 

f”(0) = 2h. 
The last of these ensures that 

f ’ / 2 5 - h  as [+O. 

4. Numerical solution of the Orr-Sommerfeld equation 
Equation (70) and the boundary conditions (71),  (72), and (73) constitute an 

eigenvalue problem for the complex eigenvalue c. It is of interest to determine the 
curves of marginal stability in the (&, k)-plane, i.e. those curves on which Im (c) = 0. 

Asymptotic methods might be used for very large R”; indeed it is not hard to see that 
as R”+ co for each fixed B”, the marginal stability curves will approach the Newtonian 
marginal stability curve asymptotically. To determine the marginal stability curves 
closer to the minimum critical reduced Reynolds numbers, numerical solution will be 
more accurate. A number of different numerical methods are available, each with their 
own advantages. 

A sensible approach is to start with the marginal stability curve for a Newtonian 
flow, and then ‘track’ points on this curve as B is increased from zero. The Riccati 
method was used for this purpose. This method transforms the Orr-Sommerfeld 
equation into four first-order nonlinear ordinary differential equations, and in doing so 
exchanges the eigenvalue problem for the equivalent problem of determining values of 
R”, d and Re(c) for which the boundary conditions are satisfied at the correct 
‘characteristic length’, (Im (c) = 0, B” fixed). For consistency with the Newtonian 
results on the stability of plane Poiseuille flow, only the case wherefextends to an even 
function of < over [ - 1,1] is considered.? For the Newtonian problem, it is these 
eigenfunctions that are found to be unstable. 

t Iffis odd thenf“”(0) = 0, and from (72) and (73) it follows thatf(0) =f’(O) = f ” ( O )  = 0. Since 
also (70) must be satisfied at 6 = 0, 

lim lf‘(5)/L3 = 0. 

Thus, f”’(0-0 as 6+0, and successive derivatives of f at 6 = 0 are also equal to zero, by 
differentiating (70); expanding fabout 6 = 0 impliesfr 0. 

5-0 

I 
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FIGURE 2.  Marginal stability curves for T , , / ~ ~ E [ O ,  11. 
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FIGURE 3. Marginal stability curves for T ~ / T , E [ O ,  11. 
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The Riccati method has been applied to the Newtonian problem by both Davey 
(1977) and Sloan (1977). The main advantages of using this method are that the 
forward integration of the transformed system has been found to be stable (which is 
not the case for more standard shooting methods), and that the method allows simple 
computation of the eigenfunctions as well as the eigenvalues. A complete introduction 
to the method may be found in Scott (1973), with extensions and applications in Davey 
(1977), Sloan (1977), Sloan & Wilks (1976), Wilks & Sloan (1976). Use of the Riccati 
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701711 B B" 
0 0 0 
0.10 0.2 0.2 
0.20 0.6 0.5 
0.30 1.2 0.9 
0.40 2.2 1.3 
0.50 4.0 2.0 
0.60 7.5 3.0 
0.70 15.6 4.7 
0.80 40.0 8.0 
0.90 180.0 18.0 
0.95 760.0 38.0 

5772.22 
5795.26 
5 823.94 
5 860.63 
5 909.23 
5 976.70 
6076.70 
6 240.33 
6557.47 
7445.55 
9034.60 1 

R, 
5 772.22 
6439.17 
7279.92 
8372.32 
9848.72 

11 953.41 
15 191.74 
20 801.09 
32787.37 
74455.48 

180692.00 

L'K 

0.264 000 
0.263 70 1 
0.263 336 
0.262 862 
0.262246 
0.261 399 
0.260 168 
0.258 207 
0.254582 
0.245 504 
0.232240 

CI. 

1.020 550 
1.019650 
1.01 8 580 
1.017 140 
1.01 5 3 10 
1.012 780 
1.009 120 
1.003 300 
0.992 572 
0.965959 
0.927603 

TABLE 1. Minimum critical conditions for instability to linearized two-dimensional disturbances. 
The first line, ~ , , / r , ~  = 0, are the values obtained by Orszag (1971). 

method for this problem requires some minor modifications to deal with the singularity 
at [ = 0. A full description of this application may be found in Frigaard (1990), where 
there is also some discussion of the accuracy and efficiency of the method. 

The marginal stability curve for a Newtonian fluid was first computed starting at the 
critical values of R", di and Re(c) that were computed by Orszag (1971). Points on this 
curve were used as an initial approximation for points on the B" = $ stability curve. 
Better approximations were found iteratively. The procedure was repeated for 
successively higher values of b. From these critical values of di and R", for each B" a 
marginal stabilitx curve was constructed by interpolation. These curves are shown in 
figure 2, where Ri has been plotted against di2 on logarithmic scales. 

The Newtonian results are in very good agreement with previously computed results. 
The Bingham results appear to form a series of nested curves (with increasing reduced 
Bingham number, or B) inside the Newtonian curve. Greater clarity is achieved by 
plotting Rk against a2 on logarithmic scales, when the marginal stability curves separate 
out; see figure 3 .  Figures 2 and 3 show clearly the stabilizing effect of an increasing 
yield stress on the flow. Not only are higher Reynolds numbers required for instability 
as Eincreases, but the flow is also unstable only to disturbances with wavelengths that 
lie within a range that becomes successively shorter as B" increases. 

Using points on these curves as starting points, each marginal stability curve was 
tracked until a minimum critical Reynolds number was reached for each value of B". 
The computed critical parameter values are contained in table 1. From table 1, the 
critical minimum Reynolds number for linear instability, R",, was plotted against B", and 
also R, was plotted against B, see figure 4(a, b). The relationship between R", and B" 
appears to be almost linear (figure 4a). 

For the minimum critical Reynolds numbers in table 1, the eigenfunctions were also 
computed for various B". The real and imaginary parts of these are plotted in figure 5 ,  
from 100 evenly spaced points in [0,1]. Values at  [ = 0.1 x k ,  k = 0, .  . . , 10 for the 
Newtonian flow, B" = 0, agree exactly with those computed by Sloan (1977). The 
Bingham results show a steady variation from the Newtonian results as E increases 
from zero. 
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5. Discussion and conclusions 
Only the simplest stability problem for a Bingham fluid has been considered. The 

results show that there is a significant increase in the critical Reynolds number for two- 
dimensional, linear instability as the yield stress increases. In comparison with Pratt's 
experimental results, the results presented here show that transition is subcritical in 
Poiseuille flow of a Bingham fluid. 

In typical drilling situations the Bingham number might vary between 10 and 100, 
for which R, can increase by an order of magnitude. Suppose that instead of the 
limiting viscosity p0 ,  one uses an effective viscosity scale to define a Reynolds number 
Re, i.e. 

where Le, U, and ve are the chosen lengthscale, velocity scale and effective viscosity 
scale, respectively. Transitional Reynolds numbers defined in this way do not show 

Re = P L ~  Ue/Te? 



Stability of Poiseuille j o w  of a Bingham fluid 147 

much variation with the yield stress. Thus, assume that for a Bingham channel flow 
transition takes place at R, = R,* M C,. The effective viscosity scale, re, has the form 

r e  = ru0 + c, 7 0  Lt?/ u,. 
Assuming a linear relationship among L,, Ue and L,  U0 used in 92, this then implies that 
the transitional Reynolds number, R*, defined using the limiting viscosity pO, satisfies 

R* M el -k e2 B. 

Thus, the experimental finding of there being little variation in R,* implies an 
approximately linear variation in R* with B. This parallels the linear increase in kc with 
B”, shown in figure 4(a). However, it is clear that the growth rates of R”, with B and of 
R* with B are very different. 

Alternatively, one can compare the observed growth in R* with B and the computed 
growth in R, with B. Although the computed and observed increases are of simnilar 
order of magnitude, the growth rates are once again very different (e.g. B = 0, 
R, z 5772, R* z 1000; B = 0.45, R, M 7000, R* z 1400; B = 560, R, z 145000, 
R* M 26700). 

Viscosity plays a dual role in fluid instability. On the other hand, by definition, 
viscosity helps to dissipate energy internally within the fluid. However, on the other 
hand, this same dissipation allows the diffusive transfer of energy from the unperturbed 
flow to the perturbation. For B = 0, Newtonian transition to turbulence in plane 
Poiseuille flows occurs rapidly, on the convective timescale of the unperturbed flow. 
Maximum growth rates of the unstable two-dimensional, linear Orr-Sommerfeld 
modes are much slower, and are essentially diffusive. This partly explains the 
discrepancy between R* and R,, at B = 0. 

For B > 0 the convective timescale remains the same non-dimensionally, but 
diffusive/dissipative timescales become much shorter, owing to the increased viscosity. 
Note that 7-f 03 at a yield surface and that R-’ characterized only the limiting non- 
dimensional viscosity, at high rates of strain. Thus, although the results do indicate 
increasing flow stability with B (i.e. since R, increases), it is quite possible that the 
maximum growth rates of unstable Orr-Sommerfeld modes also increase with B. This 
computationally intensive investigation has not been undertaken. 

Appendix. Linearized boundary conditions at the yield surfaces 

(49)-(51), is given here. 

~ ( U + E U )  = 0 at each perturbed yield surface. This implies that 

Vij(U+eu) = 0, y = +T0/Tw+ehk, i , j=  1,2,3. (A 1) 
By writing 

u(x, + T 0 / 7 ,  k eh_,, z ,  0 = ~(x, 5 T ~ / T ~ ,  z ,  t )  + O(e), 

and continuing the primary ‘fluid’ velocity into the plug region, where necessary, i.e. 

A complete derivation of the linear yield surface boundary conditions, (43)-(48) and 

First, the yield criterion and continuity of stress throughout the fluid demand that 

the conditions (43)-(48) follow directly from (A 1). 
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Secondly, the momentum condition on the plug, (25), must be linearized to give 
(49)-(51). For a periodic perturbation as described, let Q, denote that part of the plug 
for which (x, z) E [ -X, XI x [ - Z,  21. Equation (25) for the perturbed flow is 

To leading order the right-hand side of (A 2) straightforwardly becomes 

For the left-hand side of (A 2), subtraction of 

a 
- crij(P, U )  = 0 axj 

and use of the divergence theorem produces 

r f 
nij(P+ cp, U +  eu) ni ds = [ - epPS,, + 7ij( U +  eu) -7ij( U ) ]  nj ds. (A 4) 

The surface integrals in (A 4) at x = & X and z = ) Z  will cancel, due to the 
periodicity of p ,  u and h + .  This leaves only the surface integrals over each of the 
perturbed yield surfaces. On y = f 70/7, t- ch+,  - the outward surface normal vector, n, 
is given approximately by 

n = €2 + 1 , t . A  +O(2).  
( T x 7 -  ah aZ 1 

Since T depends continuously on the fluid velocity, the right-hand side of (A 4) is 
O(e). Substituting for n in (A 4), the left-hand side of (A 2) becomes 

f2f13 vij(P+ep, U+eu)njds = j - ~ ~ z [ - l p n ' , , + 7 i , ( U + c u )  

-7&)l ly=TO/TW+eh+ dz dx 

- 7 i 2 ( ~ ) l  I y = - - 7 0 , 7 W - E h -  dz dx+ W). (A 6) 

7 . .  w = 7 Y + 7 E  $3' $3' (A 7) 

where 7; = ( B / R y ) y i j ,  (A 8) 

7: = (Vij/R). (A 9) 

To evaluate the leading-order terms in the right-hand side of (A 6), the deviatoric stress 
is written as 

Both tensors 7% and 7; are symmetric; 7; is characterized by the fact that 7 y  = B/R  
always, whereas 7 E  measures the variation from the yield stress. The terms 
7ij(U+cu) -7ij(U) in (A 6) can be written as 

7ij( U+ eu) - 7ij( U )  = [7:( U+ W )  - T:( U)]  + [7;( U +  W) - 7;( U)] .  (A 10) 
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For the perturbed flow, 7; = 0 at y = k 7,/7, &- eh,. - For the basic unperturbed flow 
only 712 is non-zero, with 7f2( V) given by 

7f2(U) = f eh? B T J R T ~ ,  y = +7, , /7 , )ehk.  (A 11) 
These will be the only terms from the first square bracket of (A 10) that will appear to 
leading order in the right-hand side of (A 6). 

For terms from the second square bracket of (A lo), one writes 

= lim ~ ~ ~ ~ ~ z 7 ~ ( U + € u ) - ~ p ( U ) d z d l + O ( s Z )  (A 12) 
Yl- & T ~ / T ~  

Expanding ~ z ( U + e u )  about the primary flow gives 

For i, j = 1,2 the O(e) term above vanishes. For i, j = 2,2 the right-hand side of (A 12) 
becomes 

= 0 + O(€2), (A 14) 
since Vll(u) and Ys3(u) integrate exactly and vanish, due to the periodicity of u. 

For i, j = 3,2 consider the linearized momentum equation for w, (40). Under the 
assumption that the velocity perturbation in the z-direction remains finite initially, it 
follows that 

and hence that 

Thus, all the terms of form ~ z ( U + e u ) - - p ( U )  that appear in (A 6) are O(e2). 
Collecting together the only O(a) terms that remain in (A 2) (i.e. (A 11) and the non- 
zero pressure term from &p),  leads directly to (49), (50) and (51). 

R E F E R E N C E S  
BERIS, A. N., TSAMOPOULOS, J .  A., ARMSTRONG, R. C. & BROWN, R. A. 1985 Creeping motion of a 

COMPARINI, E. 1992 A one-dimensional Bingham flow. J.  Math. Anal. Appl. 169, 127-139. 
DAVEY, A. 1977 On the numerical solution of difficult eigenvalue problems. J.  Comput. Phys. 24, 

DAVIES, S .  J. & WHITE, C. M. 1928 An experimental study of the flow of water pipes of rectangular 

sphere through a Bingham plastic. J .  Fluid Mech. 158, 219-244. 

3 3 1-33 8. 

section. Proc. R. SOC. Lond. A 119, 92-107. 



150 

DOWELL SCHLUMBERCER 1985 Rheology and flow calculations. In Cementing technology, chap. 4. 
Dowell Schlumberger. 

FRIGAARD, I. A. 1990 The stability of parallel flow of a generalized Bingham fluid. MSc thesis, 
Oxford University. 

HANKS, R. W. 1963 The laminar-turbulent transition for fluids with a yield stress. AZChE J.  9, 
306-309. 

HANKS, R. W. & DADIA, B. H. 1971 Theoretical analysis of the turbulent flow of non-Newtonian 
slurries in pipes. AIChE J .  17, 554-557. 

HANKS, R. W. & PRATT, D. R. 1967 On the flow of Bingham plastic slurries in pipes and between 
parallel plates. SOC. Petrol. Engrs J .  7, 342-346. 

HERBERT, T. 1976 Periodic secondary motions in a plane channel. In Proc. 5th Intl Con$ Numerical 
Methods in Fluid Dynamics (ed. A. I.  Van de Vooren & P. J .  Zandbergen). Lecture Notes in 
Physics, vol. 59, pp. 235-240. Springer. 

OLDROYD, J. G. 1947 Two-dimensional plastic flow of a Bingham solid. Proc. Camb. Phil. SOC. 43, 

ORSZAG, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J.  Fluid Mech. 50, 

ORSZAG, S .  A. & KELLS, L. C. 1980 Transition to turbulence in plane Poiseuille and plane Couette 
flow. J .  Fluid Mech. 96, 159-205. 

ORSZAG, S. A. & PATERA, A. T. 1983 Secondary instability of wall bounded shear flows. J.  Fluid 
Mech. 128, 347-385. 

PATEL, V. C. & HEAD, M. R. 1969 Some observations in skin friction and velocity profiles in fully 
developed pipe and channel flows. J.  Fluid Mech. 38, 181-201. 

SCOTT, M. R. 1973 An initial value method for the eigenvalue problem for systems of ODE’S. 
J. Comput. Phys. 12, 334-347. 

SLOAN, D. M. 1977 Eigenfunctions of systems of linear ODES with separated boundary conditions 
using Riccati transformations. J .  Comput. Phys. 24, 32G330. 

SLOAN, D. M. & WILKS, G. 1976 Riccati transformations for eigenvalues of systems of linear ODES 
with separated boundary conditions. J .  Inst. Maths Applics. 18, 117-127. 

SQUIRE, H. B. 1933 On the stability for three-dimensional disturbances of viscous fluid flow between 
parallel walls. Proc. R. SOC. Lond. A 142, 621-628. 

THOMAS, D. G. 1960 Heat and momentum transport characteristics of non-Newtonian aqueous 
thorium oxide suspensions. AIChE J.  6, 631-639. 

WALTON, I. C. & BITTLESTON, S. H. 1991 The axial flow of a Bingham plastic in a narrow annulus. 
J.  Fluid Mech. 222, 39-60, 

WILKS, G. & SLOAN, D. M. 1976 Invariant imbedding, Riccati transformation and eigenvalue 
problems. J .  Inst. Maths Applics. 18, 99-116. 

ZAHN, J. P., TOOMRE, J. SPIEGEL, E. A. & GOUCH, D. 0. 1974 Nonlinear cellular motions in 
Poiseuille channel flow. J .  Fluid Mech. 64, 319-345. 

I. A .  Frigaard, S. D. Howison and I. J. Sobey 

383-395. 

689-703. 


